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1 Introduction

A variety of plots are available in Mplus 7.2 that can be used to visually

evaluate the fit of the model. We can inspect the fit on a more detailed level

where individual observations are plotted. Such level of detail usually can

not be obtained when standard SEM fit statistics are used such as chi-square

statistics and CFI/TLI indices. These standard SEM fit statistics are usually

based on a global model fit, i.e., a fit for the entire population as a whole

rather than fit for individual observations. In this paper we provide several

examples where the plots can be used to quickly discover patterns in the data

that are not accounted for in the model.
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Consider for example a SEM model that contains the following relation-

ship between the dependent variables Y , latent variables η and covariates

X

Y = ν + λη + βX + ε

η = α + γX + ζ

where ν, α, λ, γ, and β are model parameters where ν and α are vectors and

λ, γ and β are matrices. Mplus can be used to compute the factor scores

η̂ = E(η|Y,X) and the model estimated/predicted values for Y, which we

denote by Ŷ . Mplus computes two versions for the predicted values of Y .

The first one uses both the factor score and the covariates, i.e.,

Ŷ = α̂ + λ̂η̂ + β̂X.

The second method for evaluating the predicted Y values is

Ŷ ′ = ̂E(Y |X).

The second version of predicted value is commonly used in statistical

practice while the first version is more useful in a SEM setting because it is

more directly related to the actual estimated model and uses also the factor

scores to predict the Y values. The first method however has a slight caveat.

Because the factor score η̂ already incorporates the information contained

in the dependent variable Y , then Ŷ will also contain information from Y .

Therefore we will be using Y to predict Y which can in itself be problematic

2



as it lacks the rigor of pure statistical conditional expectation. However,

when the latent variables η are measured well with a sufficient number of

accurate measurements, the dependence between η̂ and a single Y variable,

i.e., a particular indicator, will be sufficiently small so that it can be ignored.

On a more technical level the purity of the Ŷ ′ definition guarantees that

Cov(Ŷ ′, ε) = 0

while

Cov(Ŷ , ε) 6= 0.

In most cases we assume that the systematic/predicted part of the variable is

independent of its residual. Note however that if the measurement instrument

is good

Cov(Ŷ , ε) ≈ 0.

Thus any violation of the above equation could be interpreted as a model

misspecification.

Estimates for the individual level residuals ε can also be formed using

either of the estimated Y values

Yres = Y − Ŷ

Y ′
res = Y − Ŷ ′.

Thus a common check that can be done using graphing utilities is to inspect

that Yres and Ŷ are independent.
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In this paper we provide some simple examples where inspecting visually

the scatter plots between the dependent variables Y , the estimated values

Ŷ , the residual values Yres, the estimated factor scores η̂, and the covari-

ates X can lead to useful discoveries and model modifications that could be

overlooked otherwise. For our examples we use simulated data so that the

illustration plots are somewhat clearer than those that might be found in

real practical examples. The methodology, however, applies to real examples

as well.

The plots do not infer statistical significance. This should come as usual

from formal statistical testing. The plots however can be used to more mean-

ingfully adjust the model. Model modification indices can sometimes produce

large values for model parameters without clear justification. Usually model

modifications that originate from a scatter plot are quite easy to interpret

and explain. The power to detect model misspecifications with plots natu-

rally will depend on the person analyzing the scatter plot and thus a formal

statement regarding plot power is not possible. Presumably, however, the

power will be lower than with other purely numerical statistical tools. Usu-

ally the sample size does little to improve the effect of a particular scatter

plot. For example doubling the number of plotted points, i.e., replicating

each plotted point, will not increase or make any difference in the plot, while

any statistical test will increase its power. Our ability to detect visually

a missing effect depends on the size of the effect rather than its statistical

significance.

The examples provided in this paper are by no means exhaustive. These

are just a few simple illustrations. Other scatter plots can be examined to
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cross-validate the estimated model.

2 Non-linear trend

In this example we generate data according to a factor analysis model with

one factor with 10 indicator variables and one covariate. All loadings λ are

set to 1, all intercept parameters are set to 0, all residual variances are set

to 1, all direct effect coefficients β are set to 0. We generate the data with a

non-linear effect on the factor

η = γX + F (X) + ζ,

where X is a standard normal variable, γ = 1 and F (X) uses of the these 3

forms: 0, X2, exp(X). As we vary the function F we get 3 different samples.

We generate the data sets with 500 observations. Next we estimate a stan-

dard factor analysis model where the non-linear trend is not accounted for,

i.e., we estimate the same model as the data generating model but without

the predictor F (X). We plot the estimated factor score η̂ against the predic-

tor X. The plots for the 3 samples are given in Figures 1-3. The results are

very clear. In the first sample the model is adequate, i.e., the linear trend

between η and X is correct and the plot reflects the linear trend that is in

the model. In the second sample Figure 2 shows a quadratic relationship be-

tween η and X. Thus the model is insufficient and there is a need to add X2

as a predictor of η. In the third sample Figure 3 shows an exponential rela-

tionship between η and X. Thus the model is insufficient and there is a need
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Figure 1: Sample 1 - linear trend, F (X) = 0

to add exp(X) as a predictor of η. None of the standard fit statistics, such

as the chi-square test, CFI, and TLI detected the misfit/inadequanecy of the

model in the second and the third samples. In addition the plots can actually

provide guidance regarding the type of non-linearity that should be explored.

The quadratic v.s. the exponential trend are clearly distinguishable.

3 Using residual values to detect direct ef-

fects

In this section we generate a sample as in the previous section with 10 indi-

cator variables, one factor and 5 standard normal covariates X1, ..., X5. All
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Figure 2: Sample 2 - quadratic trend, F (X) = X2

Figure 3: Sample 3 - exponential trend, F (X) = Exp(X)
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γi coefficients are set to 1. We also add one direct effect to the model gener-

ation from X1 to Y1, i.e., β11 = 1. We estimate the MIMIC model without

the direct effect, i.e., assuming that β11 = 0. We consider 4 different scatter

plots: Y1 v.s. X1 given in Figure 4, Y2 v.s. X1 given in Figure 5, Y1,res v.s.

X1 given in Figure 6, Y2,res v.s. X1 given in Figure 7.

Both Figure 4 and 5 show a linear trend between Yi and X1. These trends

do not indicate any misspecifcation because they are implied by the estimated

model. However, according to the estimated model which didn’t account for

the direct effect from X1 to Y1 the residual variables should be independent of

X1. Figure 6 shows a linear dependence between Y1,res and X1. This implies

an unaccounted direct effect from X1 to Y . Figure 7 shows that Y2,res is

independent ofX2 as expected and implies no misspecification. Therefore it is

important to examine scatter plots for the residual variables and not just the

observed variables. This type of misspecification is easily detectable however

with other methods such as modification indices as well as by examining the

model estimated variance covariance matrix for Yi and Xi and the observed

variance covariance matrix for these variables. This comparison is obtained

in Mplus with the RESIDUAL option of the OUTPUT command.
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Figure 4: Y1 v.s. X1

Figure 5: Y2 v.s. X1
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Figure 6: Y1,res v.s. X1

Figure 7: Y2,res v.s. X1
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4 Using residual scatter plots to detect resid-

ual covariances

In this section we generate a sample as in the previous section with 10 in-

dicator variables, one factor and without any covariates. We introduce to

the data generation model a residual correlation of 0.5 between Y1 and Y2.

The data however is analyzed without the residual correlation. We consider

the scatter plot between Y1,res and Y2,res to see if the misspecification will be

detected. This scatter plot is presented in Figure 8, while in Figures 9 we

present the scatter plots between Y1,res and Y3,res for comparative purposes.

Figure 8 shows that Y1,res and Y2,res are positively correlated and there is a

linear trend between the two with a positive slope. This clearly suggest that

the residual correlation between Y1 and Y2 should be added to the model. On

the other hand Figure 9 shows that Y1,res and Y3,res appear to be independent

which is correctly reflected in the model.

In this example the misspecification was detected by using scatter plots

between the residual variables. A scatter plot between the observed variables

would not be able to detect this misspecification because both the model and

the scatter plot indicate a positive correlation between any pair of indicator

variables.

This type of misspecification can also be detected using modification in-

dices or by comparing the estimated and observed variance covariance ma-

trices given in the residual output.
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Figure 8: Y1,res v.s. Y2,res

Figure 9: Y1,res v.s. Y3,res
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5 Using scatter plots to detect heterogeneity

in the population

For this example we generate the data set as in the previous section using a

factor analysis model with 10 indicators and one factor. The parameters are

as in the previous sections except for the residual variances of the indicator

variables which we set now at 0.1. In addition we generate the data from

a two-class model with two equal classes where the factor loadings for Y2 in

the second class is 0. All other loadings are 1. We estimate a model where

the latent class variable is ignored, i.e., we estimate a simple factor analysis

model with the 10 indicators and a single factor. We consider the scatter

plot of Yi v.s. Ŷi. Figure 10 contains the scatter plot Y1 v.s. Ŷ1 and Figure

11 contains the scatter plot Y2 v.s. Ŷ2. In Figure 10 we see a good match

between the observed and the estimated values. In Figure 11 however that

is not the case. We can clearly see the two patterns in the data, indicating

an underlying heterogeneity in the population and the potential for Mixture

modeling to improve the model and provide a better fit for the data. In this

example as well, the usual fit statistics such as the chi-square test, CFI and

TLI are misleading because they indicate a nearly perfect fit and overlook

the drastic discrepancy illustrated in Figure 11.
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Figure 10: Y1 v.s. Ŷ1

Figure 11: Y2 v.s. Ŷ2
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6 Discussion

Residual analysis in regression is a well established statistical tool, however,

in structural equation modeling this is not so. Because the latent variables

in the model are not observed, to construct the residuals Yres we need to use

the factor score estimates for the latent variables. In this note we show that

despite this complication, the residuals can successfully be used to evaluate

model fit and discover needed model modifications. Bollen and Arminger

(1991) explore other applications of SEM residual analysis such as outlier

detection and individual observation test of fit using standardized individual

residuals. Wang, Brown and Bandeen-Roche (2005) explore residual analysis

in a Mixture context for model diagnostics including determining the number

of latent classes. Raykov (2005) uses residual analysis for evaluating local

goodness of fit in SEM. Residual analysis can also benefit from the use of

plausible values for the latent variables, see Asparouhov and Muthén (2010),

based on Bayesian estimation. Plausible values would allow us to use the

residuals for further modeling that goes beyond standard SEM techniques

and expands the utility of this methodology.
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